Publikacje

Książki:

  1. Kusy M.: “Metodyki i techniki programowania - laboratorium” (materiały pomocnicze), Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2009
  2. Kusy M.: “System for Cancer Diagnosis Based on Support Vector Machines and Neural Networks” (in English, PhD Thesis), Warsaw University of Technology, Faculty of Mechatronics, Warsaw 2008

Artykuły:

  1. Kowalski P.A., Kusy M.: Sensitivity Analysis for Probabilistic Neural Network Structure Reduction”, IEEE Transactions on Neural Networks and Learning Systems, wersja online (DOI: 10.1109/TNNLS.2017.2688482)
  2. Kusy M., Kluska J.: Assessment of prediction ability for reduced probabilistic neural network in data classification problems, Soft Computing, Vol. 21, No. 1, s. 199–212, 2017 (DOI 10.1007/s00500-016-2382-9)
  3. Kusy M., Zajdel R.: Application of Reinforcement Learning Algorithms for the Adaptive Computation of the Smoothing Parameter for Probabilistic Neural Network, IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, No. 9, s. 2163–2175, 2015 (DOI 10.1109/TNNLS.2014.2376703)
  4. Kusy M.: “Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems, International Journal Of Electronics and Telecommunications, Vol. 61, No. 3, s. 293–304, 2015 (DOI 10.1515/eletel-2015-0038)
  5. Kusy M., Zajdel R.: Probabilistic neural network training procedure based on Q(0)-learning algorithm in medical data classification, Applied Intelligence, Vol. 41, No. 3, s. 837–854, 2014 (DOI 10.1007/ s10489-014-0562-9)
  6. Kusy M., Obrzut B., Kluska J.: Application of gene expression programming and neural networks to predict adverse events of radical hysterectomy in cervical cancer patients, Medical & Biological Engineering & Computing, Vol. 51, No. 12, s. 1357–1365, 2013 (DOI 10.1007/s11517-013-1108-8)
  7. Kusy M., Szczepanski D.: “Influence of graphical weights’ interpretation and filtration algorithms on generalization ability of neural networks applied to digit recognition”, Neural Computing & Applications, Vol. 21, No. 7, s. 1783–1790, 2012 (DOI 10.1007/s00521-011-0754-8)

Rozdziały w książkach:

  1. Kusy  M., Kowalski P. A. Modification of the Probabilistic Neural Network with the Use of Sensitivity Analysis Procedure. Proceedings of the Federated Conference on Computer Science and Information Systems. ACSIS Vol. 8, s. 97–103, IEEE, 2016 (DOI: 10.15439/2016F280)
  2. Kusy  M., Zajdel R.: "Probabilistic Neural Network Training Procedure with the Use of SARSA Algorithm", Lecture Notes in Artificial Intelligence LNAI 9119 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer International Publishing Switzerland, s. 49-58, Part I, 2015
  3. Żabiński T., Mączka T., Kluska J., Kusy M., Gierlak P., Hanus R., Prucnal S., Sęp J: "CNC Milling Tool Head Imbalance Prediction Using Computational Intelligence Methods", Lecture Notes in Artificial Intelligence LNAI 9119 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer International Publishing Switzerland, s. 503-514, Part I, 2015
  4. Kluska J., Kusy  M., Obrzut B.: "The Classifier for Prediction of Peri-operative Complications in Cervical Cancer Treatment", Lecture Notes in Artificial Intelligence LNAI 8468 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer International Publishing Switzerland, s. 155-166, Part II, 2014
  5. Kusy  M., Zajdel R.: "Stateless Q-Learning Algorithm for Training of Radial Basis Function Based Neural Networks in Medical Data Classification", Advances in Intelligent Systems and Computing 230 (J. Korbicz, M. Kowal, Eds.) Springer-Verlag Berlin, Heiderberg, s. 267-278, 2014
  6. Żabiński T., Mączka T., Kluska J., Kusy M., Hajduk Z., Prucnal S.: "Failures Prediction in the Cold Forging Process Using Machine Learning Methods", Lecture Notes in Artificial Intelligence LNAI 8467 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer International Publishing Switzerland, s. 622-633, Part I, 2014
  7. Kusy  M., Kluska J.: "Probabilistic Neural Network Structure Reduction for Medical Data Classification", Lecture Notes in Artificial Intelligence LNAI 7894 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer-Verlag Berlin, Heiderberg, s. 118-129, Part I, 2013
  8. Kluska J., Kusy  M., Obrzut B.: "Prediction of Radical Hysterectomy Complications for Cervical Cancer Using Computational Intelligence Methods", Lecture Notes in Artificial Intelligence LNAI 7268 (L. Rutkowski, M. Korytkowski, R. Sherer, R. Tadeusiewicz, L.A. Zadeh, J. Żurada, Eds.), Springer-Verlag Berlin, Heiderberg, s. 259-267, Part II, 2012 
  9. Kusy M.: “New Stopping Procedure for SMO Algorithm Presented in Medical Data Classification” Computational Intelligence: Methods and Applications, (A. Cader, L. Rutkowski, R. Tadeusiewicz, J. Żurada, Eds.), Academic Publishing House EXIT, s. 279-290, Warszawa 2008
  10. Kusy M.: “Application of data classifiers to breast cancer diagnosis”, Fault Diagnosis and Fault Tolerant Control (J. Korbicz, K. Patan, M. Kowal, Eds.), Academic Publishing House EXIT, s. 279-286, Warszawa 2007
  11. Kusy M., Zajdel R.: “Prediction Capabilities of Nonlinear Models in Normalized Medical Data Classification”, Artificial Intelligence and Soft Computing (A. Cader, L. Rutkowski, R. Tadeusiewicz, J. Żurada, Eds.), Academic Publishing House EXIT, s. 267-272, Warszawa 2006
  12. Kusy M.: “Application of SVM to ovarian classification problem”, Lecture Notes in Artificial Intelligence LNAI, 3070 (L. Rutkowski, J. Siekmann, R. Tadeusiewicz, L.A. Zadeh, Eds.), Springer-Verlag Berlin Heiderberg New York, s. 1020-1025, 2004

Konferencje:

  1. Kusy M., Zajdel R.: “Comparison of two radial function based models: Support vector machine and neural network in the classification of ovarian cancer data”, Konferencja: International Symposium on Innovations in Intelligent Systems and Applications INISTA'2005, Yildiz Technical University Electric Electronics Faculty Istambul -Turkey 15-18 czerwca, s. 316-320, 2005
  2. Kusy M.: “Computational modification of SMO algorithm in the classification of ovarian cancer data”, Akademia Górniczo-Hutnicza Konferencja: Sztuczna Inteligencja w Inżynierii Biomedycznej SIIB, AGH Kraków, Kraków (cdrom - 4 strony), 2004
Strony domowe pracowników Politechniki Rzeszowskiej stworzono w oparciu o oprogramowanie udostępnione przez firmę NetFreedom